培训目标:
|
- 了解机器学习概要
- 学习广义线性模型
- 经典概率模型
- 决策树及其组合模型 Ensemble Models
- 非监督学习模型 Unsupervised Learning
- 人工神经元网络 Artificial Neural Networks
-
-
主题
|
内容 |
机器学习概要
|
a) 什么是机器学习 & 与传统软件开发的异同
b) 机器学习的分类和特点
c) 机器学习可以解决的问题和应用现状 |
广义线性模型
|
a) 感知器模型 Perceptron
b) 线性神经元 Linear Neuron / Adaline
c) 逻辑回归 Logistic Regression
d) 误差曲面和三种梯度下降算法 Gradient Descendent |
经典概率模型
|
a) 朴素贝叶斯 Na?ve Bayes |
决策树及其组合模型
Ensemble Models
|
a) 决策树 Decision Tree: ID3 & CART
b) 随机森林 Random Forest
c) 自适应增强算法 Adaptive Boosting (AdaBoost)
d) 梯度增强决策树 Gradient Boost Decision Tree (GBDT) |
非监督学习模型
Unsupervised Learning
|
a) 聚类 Clustering: K-‐Means, Hierarchy
b) 降维 Dimension Reduction
i. 主成分分析 Principle Component Analysis
ii. 奇异值分解 Singularity Decomposition c) 关联规则
i. Apriori 关联分析
ii. FP-‐growth 频率项集 |
人工神经元网络
Artificial Neural Networks
|
a) 神经元网络架构
b) 向后传播训练算法 Backpropagation
c) 多层感知器网络 Multiple-‐Layer Perceptron (MLP) d) 深度学习神经网络介绍
i. 卷积神经网络 CNN
ii. 循环神经网络 RNN 及其应用 1. 长短记忆神经网络 LSTM
2. 受限玻尔兹曼机 Restricted Boltzmann Machine
3. 深度置信网络 Deep Belief Net
4. Deep Autoencoder |
|
如果您想学习本课程,请
预约报名
如果没找到合适的课程或有特殊培训需求,请
订制培训
除培训外,同时提供相关技术咨询与技术支持服务,有需求请发需求表到邮箱soft@info-soft.cn,或致电4007991916
技术服务需求表下载请点击
服务优势:
丰富专家资源,精准匹配相关行业,相关项目技术精英,面向用户实际需求,针对性培训或咨询,互动式交流,案例教学,精品小班,实际工程项目经验分享,快捷高效,节省时间与金钱,少走弯路与错路。
专家力量:
中国科学院相关研究所高级研究人员
西门子,TI,vmware,MSC,Ansys,MDI,Mentor, candence,Altium,Atmel 、Freescale,达索,华为等
大型公司高级工程师,项目经理,技术支持专家
中科信软培训中心,资深专家或讲师
大多名牌大学,硕士以上学历,相关学历背景专业,理论素养高
多年实际项目实践,大型复杂项目实战案例分享,热情,乐于技术分享
针对客户实际需要,真实案例演示,互动式沟通,学有所值