培训目标:
|
- 了解大数据分析挖掘技术
- 常用机器学习算法原理
- 大数据挖掘业务场景和生产平台
- 编程实践(动手
一、大数据分析挖掘技术介绍
|
1、map/reduce
2、mahout数据挖掘
3、sql on hadoop
4、spark生态体系
5、R语言
6、MPI并行计算
7、GPU并行计算(深度学习)
8、java并行计算框架 |
二、常用机器学习算法原理 |
1、决策树
2、随机森林
3、协同过滤推荐算法(余弦相似、修正余弦)
4、Jaccard算法
5、朴素贝叶斯算法
6、k-means聚类算法
7、pagerank算法
8、逻辑回归
9、图计算 |
三、大数据挖掘业务场景和生产平台 |
1、互联网金融业务—如何构建阿里金融系统
2、银行客户需求业务
3、大数据分析生产平台
4、推荐/广告系统的原理、架构、模型、验证等。
5、基于GBDT的组合模型架构 |
四、编程实践(动手) |
1、迭代类机器学习编程入门-求圆周率
2、pagerank的并行化实现(*)
3、逻辑回归算法的java实现
4、决策树c45,id3的java实现
5、随机森林和全树并行化实现
6、训练数据和结果模拟器
7、模型结果规则化处理
8、协同过滤java实现
9、基于图计算的推荐java实现
|
五、神经网络及深度学习 |
1、什么是神经网络算法
2、多层神经网络程序如何实现(java程序)
3、神经网络数学原理(误差函数、梯度下降求最小值、更新权重和截距)
4、推导需要的最小化数学知识(导数和偏导数、导数运算、梯度下降原理)
5、数学推导过程
6、什么是深度学习
7、深度学习的计算过程
8、深度学习如何训练
9、深度学习和神经网络的关系是什么
10、图像识别原理 |
|
如果您想学习本课程,请
预约报名
如果没找到合适的课程或有特殊培训需求,请
订制培训
除培训外,同时提供相关技术咨询与技术支持服务,有需求请发需求表到邮箱soft@info-soft.cn,或致电4007991916
技术服务需求表下载请点击
服务优势:
丰富专家资源,精准匹配相关行业,相关项目技术精英,面向用户实际需求,针对性培训或咨询,互动式交流,案例教学,精品小班,实际工程项目经验分享,快捷高效,节省时间与金钱,少走弯路与错路。
专家力量:
中国科学院相关研究所高级研究人员
西门子,TI,vmware,MSC,Ansys,MDI,Mentor, candence,Altium,Atmel 、Freescale,达索,华为等
大型公司高级工程师,项目经理,技术支持专家
中科信软培训中心,资深专家或讲师
大多名牌大学,硕士以上学历,相关学历背景专业,理论素养高
多年实际项目实践,大型复杂项目实战案例分享,热情,乐于技术分享
针对客户实际需要,真实案例演示,互动式沟通,学有所值